
    

11th Iran Internet Programming 
Contest, 2013-2014 
Sharif University of Technology, 28 Nov. 2013 

 
 

 
 

Problem A - Page 1 of 1 
 

Problem A: Collatz Conjecture 
The Collatz conjecture which is also known as the 3݊ + 1 conjecture is a very well known and old conjecture in 
mathematics. The conjecture is as follows. Take any natural number ݊. If ݊ is even, divided by two to get ݊/2 and if ݊ 
is odd number greater than 1, triple it and add one to obtain 3݊ + 1. Repeat this process to get a sequence of natural 
numbers known as the Hailstone sequence. The conjecture is that no matter what number you start, you always reach 1. 
The hailstone sequence for ݊ = 3 is “3, 10, 5, 16, 8, 4, 2, 1”. Paul Erdos said “Mathematics is not yet ripe for such 
problems” and offered $500 for its solution. Now it ‘s time to show Erdos that the Collatz conjecture can be proved for 
small numbers in 11௧  Iran Internet Programming Contest. You are to write a program that computes the length of the 
Hailstone sequence for the given ݊.   

Input (Standard Input) 

There are multiple test cases in the input. Each test case consists of a line containing a non-negative integers 0 ≤ ݊ ≤
100. The input terminates with “0” which should not be processed. 

Output (Standard Output) 
For each test case, output the length of the Hailstone sequence in one line. 

Sample Input and Output 
Standard Input Standard Output 

1 
2 
3 
0  

1 
2 
8 
 
 

 



    

11th Iran Internet Programming 
Contest, 2013-2014 
Sharif University of Technology, 28 Nov. 2013 

 
 

 
 

Problem B - Page 1 of 2 
 

Problem B: Smart File Name Sorting 
You have likely tried to sort a number of files in a directory based on their names. As you have noticed, in old basic 
environments, the file names are sorted in the ASCII-based lexicographic order. The sorting of the alphanumeric ASCII 
characters is as follows: 

0 <  1 <  …  <  9 < > ܣ  > ܤ   …  <  ܼ <  ܽ <  ܾ <  …  <   ݖ 

Thus, the following file names would be placed in the following order: 

A, A0, A01, A02, A1, A10, A2, AA, AB, Aa, Ab, B, B0, a, a0 

But, the sorting that we usually would like is the following: 

a, A, a0, A0, A01, A1, A02, A2, A10, Aa, AA, Ab, AB, B, B0 

Our desired sorting can be formally defined with specifying the way of comparing two file names: 

1. If two file names are exactly the same, they are equal. Otherwise, they are not considered to be equal! 
2. Any maximal block of consecutive digits in the file name should be considered as a single number. So, a file 

name is in fact a sequence of letters and numbers. 
3. Two unequal file names are compared in two phases. Phase 2 is used only if the order of the two file names 

could not be distinguished during Phase 1. 
4. Phase  1 (soft comparison): The file names are compared lexicographically based on the following rules: 

a. Numbers precede letters (ܽ1 < ܽܽ). 
b. Numbers with lower values precede numbers with higher values (ܽ2 < ܽ10). 
c. Numbers with the same value are not distinguished in this phase. 
d. The letters are compared case-insensitively (in this phase only). 

5. Phase 2 (exact/strict comparison): The file names are compared lexicographically based on the following rules:  
a. Numbers with the same value (but with different sequence of digits) are compared lexicographically 

(01 < 1 < 02 < 2 < 10). 
b. Lower case of each letter precedes its upper case form (ܽ < ܣ < ܾ <  .(ܤ

Now, you have to write the “compare” method of our desired sorting algorithm. 

Input (Standard Input) 

Each test case consists of two lines. The first string and the second string appear on the first line and the second line, 
respectively.  Both strings are strings of at most 255 alphanumeric characters. The input terminates with "###" which 
should not be processed. 

Output (Standard Output) 

For each test case output ‘<’, ‘=’ or ‘>’ (omit the quotes) in one line as described in the following. 

 ‘<’: if the first string precedes the second one (in our desired sorting) 
 ‘=’: if the two strings are exactly the same 
 ‘>’: if the first string succeeds the second one (in our desired sorting) 

 



Problem B- Page 2 of 2 

 

 

Sample Input and Output 
Standard Input Standard Output 

A 
A 
A 
b 
A 
a 
1 
b 
Abc 
aBD 
Qwerty10 
Qwerty10 
100 
100 
010 
2 
010 
10 
A10 
a2 
a 
aa 
A 
aa 
10c03 
10b3 
1a2b3d 
01a002b3d0 
### 

= 
< 
> 
< 
< 
= 
= 
> 
< 
> 
< 
< 
> 
< 

 



    

11th Iran Internet Programming 
Contest, 2013-2014 
Sharif University of Technology, 28 Nov. 2013 

 
 

 
 

Problem C - Page 1 of 1 
 

Problem C: RNA Molecules 
The RNA molecule is a sequence of four nucleotides ܩ ,ܥ ,ܣ, and ܷ. Due to the chemical structure of nucleotides, there 
could be hydrogen bonds established between any pair of (ܣ, ܷ), (ܷ, ,ܩ) ,(ܣ ,ܥ) or (ܥ  nucleotides, but not for the (ܩ
other cases (i.e. for instance ܣ can’t make a hydrogen bond with either ܥ or ܩ). Every nucleotide can have hydrogen 
bond with at most one other nucleotide, and there could not be any hydrogen bond between two nucleotides that are 
adjacent in the RNA sequence as there is already a covalent interaction between them. 

In the living cells, RNA will fold and there would be many hydrogen bonds established. But the hydrogen bonds can’t 
cross each other, i.e. if there is a bond from nucleotide ݅ to nucleotide ݆ (݅ < ݆), the nucleotides ݅ + 1, … , ݆ − 1 can have 
bonds only between themselves, and can’t have any bonds to either 1,… , ݅ − 1 or ݆ + 1, … , ݊  where ݊ is the number of 
nucleotides in the RNA.  

The real case for RNA is more complicated, but we are not going to face you so much complexities in this competition, 
making your life easier. 

Your task is to find the maximum possible bonds for a set of given RNA molecules.  

 Input (Standard Input) 

There are multiple test cases in the input. Each test case starts with a line containing a non-negative integers 0 ≤ ݊ ≤
500. The second line of each test case contains a string (RNA molecule) of size ݊ consisting of characters ܩ ,ܥ ,ܣ, and 
ܷ. The input terminates with “0” which should not be processed. 

Output (Standard Output) 

For each test case, output the maximum number of hydrogen bonds for the given RNA molecule. 

Sample Input and Output 
Standard Input Standard Output 

2 
AU 
4 
AGCU 
4 
AGUC 
0 

0 
1 
1 
 

 



    

11th Iran Internet Programming 
Contest, 2013-2014 
Sharif University of Technology, 28 Nov. 2013 

 
 

 
 

Problem D - Page 1 of 2 
  

Problem D: Pirates 
A ship has been attacked by pirates. The ship is within the distance of about 30 minutes from the nearest navy, who are 
approaching to rescue them. The ship’s crews have gathered in the safe zone of the ship. The captain wants to secure the 
safe zone in order to prevent the pirates from taking them as hostages, which makes the situation more complicated for 
the rescuers. The ship has many zones connected by some doors. Each door can be locked and unlocked from just one 
side of the door. The pirates have occupied some of the ship’s zones, and the captain wants to lock the minimum 
number of doors in order to prevent the pirates entering the safe zone. For example, in the following setting, a ship with 
7 zones is depicted:  

                                     

Rooms are numbered from 0 through 6, and a ‘*’ is shown in one side of each door denoting the door can be 
locked/unlocked from that side. If the crews are in Zone 4 and all pirates are in Zone 5,  to protect the crews, the captain 
needs to lock at least two doors, namely the door between Zones  3 and 5, and the door between Zones 4 and 5. Note 
that locking the door between Zones 3 and 4 instead of the door between Zones 3 and 5 is a big mistake, as the pirates 
can easily unlock the door between Zones 3 and 4 and enter the safe zone. 

Input (Standard Input) 

There are multiple test cases in the input. Each test case starts with a line containing two non-negative integers ݖ and ݏ 
(0 ≤ ݖ ≤ 20, 0 ≤ ݏ ≤ 19), where ݖ indicates the number of zones in the ship and ݏ is the number of the safe zone. 
Suppose zones are numbered from 0 through ݖ − 1. On the following ݖ lines, the ݅௧  line represents the information for 
Zone ݅ − 1. Each line starts with either ‘P’ or ‘NP, where ‘P’ means the zone has been occupied by some pirates, and 
‘NP’ means the zone is still clean. After ‘P’/’NP’, the number of doors which are lock/unlock-able from inside Zone 
݅ − 1 appears. The line is followed with the list of reachable zones from these doors. For instance, in the above 
example, we don’t list Zones 3 and 4 in the line representing  Zone 5, because the doors being adjacent to Zones 3 and 4 
are not lock/unlock-able from inside zone 5. The output terminates with “0 0” which should not be processed. 

Output (Standard Output) 

For each test case, output the minimum number of doors which must be looked in order to protect the safe zone. If it is 
impossible to secure the safe zone, just output ‘Sorry Captain!’. Assume that all doors are open at the beginning, and 
there is not any pirate in the safe zone. 



Problem D- Page 2 of 2 

Sample Input and Output 

Standard Input  Standard Output 

7 4 
NP 0 
NP 0 
NP 0 
NP 2 5 4 
NP 2 5 0 
P 3 6 2 1 
NP 0 
7 4 
NP 0 
NP 0 
NP 0 
P 2 5 4 
NP 2 5 0 
NP 3 6 2 1 
P 0 
4 0 
NP 4 2 2 1 1 
NP 1 3 
NP 1 1 
P 0 
0 0 

2 
Sorry Captain! 
1 

 



    

11th Iran Internet Programming 
Contest, 2013-2014 
Sharif University of Technology, 28 Nov. 2013 

 
 

 
 

Problem E - Page 1 of 1 
 

Problem E: Shuffling Strings 
Suppose ଵܵ and ܵଶ are two strings of size ݊ consisting of characters ܣ through H (capital letters). We plan to perform 
the following step several times to produce a given string ܵ. In each step we shuffle ଵܵ and ܵଶ to get string ଵܵଶ. Indeed, 
ଵܵଶ is obtained by scanning ଵܵ and ܵଶ from left to right and putting their characters alternatively in ଵܵଶ from left to right. 

The shuffling operation always starts with the leftmost character of ܵଶ. After this operation, we set ଵܵ and ܵଶ to be the 
first half and the second half of ଵܵଶ, respectively. For instance, if ଵܵ = and ܵଶ ܦܣܪܥܤܣ = then ଵܵଶ ,ܥܣܦܨܧܦ =
and for the next step ଵܵ ,ܦܥܣܣܪܦܥܨܤܧܣܦ = and ܵଶ ܥܨܤܧܣܦ =  For the given string ܵ of size 2݊, the goal .ܦܥܣܣܪܦ
is to determine whether ଵܵଶ = ܵ at some step.   

Input (Standard Input) 
There are multiple test cases in the input. Each test case starts with a line containing a non-negative integers 0 ≤ ݊ ≤
100 which is the length of ଵܵ and ܵଶ. The remainder of each test case consists of three lines. The first and the second 
lines contain strings ଵܵ and ܵଶ with size ݊, respectively, and the last line contains string ܵ with size 2݊. The input 
terminates with “0” which should not be processed. 

Output (Standard Output) 

For each test case, output -1 if ܵ is not reachable. Otherwise, output the minimum number of steps to reach ܵ. To make 
your life easier, we inform you that the output is not greater than 50 for the given input. 

Sample Input and Output 
Standard Input Standard Output 

4  
AHAH  
HAHA  
HHAAAAHH  
3  
CDE  
CDE  
EEDDCC 
0  

2 
-1 
 

 



 11th Iran Internet Programming 
Contest, 2013-2014 
Sharif University of Technology, 28 Nov. 2013 

 
 

 
 

Problem F - Page 1 of 1 
 

Problem F: Guess Number 
My tech-lover son has been attracted by the exciting game “Guess Number”. In this game, the player must find a hidden 
positive integer number by at most ܶ guesses (or turns). The parameter ܶ together with a health parameter ܪ is 
determined at the beginning of the game. In each turn, the player must enter a number. If the number is equal to the 
hidden number, he wins provided that ܪ ≥ 0. If the number is bigger than the hidden number, ܪ is decreased by 1 unit 
of health. Otherwise, ܪ remains unchanged. When ܪ becomes negative or ܶ reaches 0, the player definitely loses. The 
player can see the remaining turns and units of health after each turn. Although the game seems to be constructive, but 
something makes me suspicious! my son always wins. He claims he has a searching algorithm to find the hidden 
number but I can’t believe him as for the given ܪ and ܶ there must be a big number which is not guessable by any 
searching algorithm. To prove my son claim is wrong, I kindly ask you to help me find the smallest ܯ for which  at 
least a number from 1 through ܯ as the hidden number can’t be guessed for the given  ܶ and ܪ.  For example, there is 
not any algorithm for finding all positive integers not greater than ܯ = 3 by 2 turns and 0 units of health.  

Input (Standard Input) 

There are multiple test cases. Each test case consists of one line containing two non-negative integers ܶ and 0) ܪ ≤
ܪ,ܶ ≤ 100). The input terminates with “0 0” which should not be processed. 

Output (Standard Output) 
For each test case output ܯ described above in one line. As M maybe too large, output it modulo 109+7. 

Sample Input and Output 
Standard Input Standard Output 

3 0 
3 1 
0 0 

4 
7 

 



    

11th Iran Internet Programming 
Contest, 2013-2014 
Sharif University of Technology, 28 Nov. 2013 

 
 

 
 

Problem G - Page 1 of 1 
 

Problem G: Subset Sum 
For a given set ܺ of ݊ not-necessarily-distinct numbers and a given number ݐ, the goal is to compute the number of  
non-empty subsets ܻ of ܺ with the properties that the sum over all members of ܻ is at most ݐ and adding any member in 
ܺ − ܻ to ܻ makes the summation greater than ݐ. Note that the numbers in the set may have the same values, but they 
must be considered inherently different. 

Input (Standard Input) 

There are multiple test cases in the input. Each test case starts with a line containing two non-negative integers 0 ≤ ݊ ≤
30 and 0 ≤ ݐ ≤ 1000. The remainder of each test case consists of one or more lines containing ݊ non-negative numbers 
belonging to ܺ. The input terminates with “0 0” which should not be processed. 

Output (Standard Output) 

For each test case, output the number of subsets defined above. 

Sample Input and Output 
Standard Input Standard Output 

6 25  
8 9 8 7 16 5  
30 250  
1 2 3 4 5 6 7 8 9 10 11  
12 13 14 15 16 17 18 19 20  
21 22 23 24 25 26 27 28 29 30 
0 0  

15  
16509438  
 

 



    

11th Iran Internet Programming 
Contest, 2013-2014 
Sharif University of Technology, 28 Nov. 2013 

 
 

 
 

Problem H - Page 1 of 1 
 

Problem H: Minesweeper 
It is not surprising that you have played the Minesweeper game at least once. In this 
game, the player is initially presented with a grid (minefield) of squares.  Some 
randomly selected squares, unknown to the player, are designated to contain mines. 
A square is unsafe if it contains a mine. Otherwise, it is called safe. The game is 
played by revealing the squares of the grid, typically by mouse clicks. If an unsafe 
square is revealed, the player loses the game. Otherwise, a digit is revealed in the 
safe square, indicating the number of adjacent squares (out of the possible eight) that 
are unsafe. In typical implementation, if this number is zero, the square appears 
blank, and the surrounding squares are automatically also revealed. In a variant of 
this game, the number of unsafe squares is given at the beginning of the game but in 
our variant this number is hidden. The player wins if he can reveal all safe squares. 
For a given minefield, your job is to find out whether the minefield can be 
deterministically cleaned with starting from the given start square, i.e. until all  safe squares are not revealed, at each 
step we can find more safe squares just using the numbers appearing on revealed squares (not by clicking squares 
randomly.)   

Input (Standard Input) 

There are multiple test cases in the input. Each test case starts with a line containing two non-negative integers ݊ and ݉ 
not exceeding 10 where ݊ and ݉ are the number of rows and columns of the minefield.  Each of the next ݊ lines 
contains a string of size ݉ consisting of {‘+’, ‘*’, ‘-’}. Character ‘-’ denotes a blank square, ‘*’ denotes an unsafe 
square and ‘+’ denotes the starting square which by default is safe. There is exactly one ‘+’ in each test case. The input 
terminates with “0 0” which should not be processed. 

Output (Standard Output) 
For each test case, output “Yes” if the given minefield can be deterministically cleaned. Otherwise, output “No”. 

Sample Input and Output 
Standard Input Standard Output 

1 3 
-+* 
3 4 
*--+ 
**-- 
*--* 
3 4 
***- 
*--- 
*--+ 
0 0 

No 
No 
Yes 
 

 



    

11th Iran Internet Programming 
Contest, 2013-2014 
Sharif University of Technology, 28 Nov. 2013 

 
 

 
 

Problem I - Page 1 of 1 
 

Problem I: Tunb Airline 
Tunb airline has several flight plans in the Persian Gulf in which there are several 
beautiful islands. Each flight path looks like a polygonal path on a 2D map starting at 
one island and ending at another island as depicted  in the figure. Recently, the airline 
has decided to determine how much safe its flights are. For a flight plan, one of the 
safety measures to be determined is to find out the maximum of dangerousness(p) 
over all points p on the flight path where dangerousness(p) is the minimum Euclidean 
distance of p to islands located in the Persian Gulf. If this measure is low, the chance 
of surviving is high if an incident happens. Your job is to compute this safety 
measure for a given flight plan.  
 
                                                                       

 Input (Standard Input) 
There are multiple test cases in the input. Each test case starts with a line containing two non-negative integers ݊ and ݉ 
0 ≤ ݊, ݉ ≤ 20 where ݊ is the number of islands in the Persian Gulf and ݉ is the number of vertices of the flight path. 
Then it is followed by ݉ lines each containing two coordinates of the path vertices from first to last. Finally each test 
case is terminated with the description of islands which are disjoint polygons. For each polygon, first the number of 
vertices, ݐ, appears in a line (ݐ is at least 3 and at most 30). In the next ݐ lines, the coordinates of the vertices of the 
polygon is given in either clockwise or counter-clockwise order; each line containing two integers.  All coordinates are 
within range -10,000 and 10,000. The input finishes with a line containing "0 0" (omit the quotes) which should not be 
processed as a test case. 

Output (Standard Output) 
For each test case, output the safety measure defined above rounded to exactly three digits after the decimal point. 

Sample Input and Output 
Standard Input Standard Output 

1 2 
-9 -6 
5 1 
3 
0 16 
-16 -12 
17 -6 
2 3 
12 4 
16 17 
3 9 
4 
1 0 
4 19 
19 14 
6 12 
3 
10 10 
5 3 
18 2 
0 0 

0.000 
2.943 
  

 


